1、期望收益率计算公式
HPR=(期末价格 -期初价格+现金股息)/期初价格
例:A股票过去三年的收益率为3%、5%、4%,B股票在下一年有30%的概率收益率为10%,40%的概率收益率为5%,另30%的概率收益率为8%。计算A、B两只股票下一年的预期收益率。
解:
A股票的预期收益率 =(3%+5%+4%)/3 = 4%
B股票的预期收益率 =10%×30%+5%×40%+8%×30% = 7.4%
2、方差计算公式
例:求43,45,44,42,41,43的方差。
解:平均数=(43+45+44+42+41+43)/6=43
S^2=【(43-43)^2+(45-43)^2+(44-43)^2+(42-43)^2+(41-43)^2+(43-43)^2】/6
=(0+4+1+1+4+0)/6
=10/6
3、协方差计算公式
例:Xi 1.1 1.9 3,Yi 5.0 10.4 14.6
解:E(X) = (1.1+1.9+3)/3=2
E(Y) = (5.0+10.4+14.6)/3=10
E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02
Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
4、相关系数计算公式
解:由上面的解题可求X、Y的相关系数为
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
表明这组数据X,Y之间相关性很好!
(1)期望值计算公式扩展资料:
1、期望收益率,又称为持有期收益率(HPR)指投资者持有一种理财产品或投资组合期望在下一个时期所能获得的收益率。期望收益率是投资者在投资时期望获得的报酬率,收益率就是未来现金流折算成现值的折现率,换句话说,期望收益率是投资者将预期能获得的未来现金流折现成一个现在能获得的金额的折现率。。
2、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。
4、相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
1、期望值计算公式:
E(X)=(n*M)/N [其中x是样本数,n为样本容量,M为样本总数回,N为总体中的答个体总数],求出均值,这就是超几何分布的数学期望值。
2、方差计算公式:
V(X)=X1^2*P1+X2^2*P2+…Xn^2*Pn-a^2 [这里设a为期望值]
(2)期望值计算公式扩展资料:
在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。
在概率分布中,期望值和方差或标准差是一种分布的重要特征。
在经典力学中,物体重心的算法与期望值的算法十分近似。
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
首先要明确期望是什么,期望就是概率与取值的乘积的和,然而取值有两个,一个是版7,一个事-3,7的概率是1/6,而-3的概率是5/6,所以权期望EX=7*(1/6)+(-3)*(5/6)=-8/6,这才是正确的期望值.
^
方程D(X)=E{[X-E(X)]^2}=E(X^2) – [ E(X)]^2,其中 E(X)表示数学期望。
对于连续型随回机变量X,若答其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大),若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
(4)期望值计算公式扩展资料:
常用分布的方差
1、两点分布
2、二项分布X ~ B ( n, p )引入随机变量Xi (第i次试验中A 出现的次数,服从两点分布)
3、泊松分布(推导略)
4、均匀分布另一计算过程为
5、指数分布(推导略)
6、正态分布(推导略)
7、t分布:其中X~T(n),E(X)=0
8、F分布:其中X~F(m,n)。
期望公式:
方差公式:
(5)期望值计算公式扩展资料:
在概率论和统计方差衡量随机变量或一版组数据时权离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)
若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
一件不确定的事件有确定的所有结果,把第一种的结果值记为s1,它发生的概率记版为p1,第权二种结果值记为s2,它发生的概率为p2,… 第n种结果值记为sn,它发生的概率记为pn … 那么期望值 Ex=s1*p1+s2*p2+…+sn*pn+…
每种情况x乘对应概率之和。如骰子有1,2,3,4,5,6
情况
期望就是1×1/2+2×1/2+3×1/2+…+6×1/2=21/2
^
方程D(抄X)=E{[X-E(袭X)]^2}=E(X^2) – [ E(X)]^2,其中E(X)表示数学期望。
对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大),若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
(8)期望值计算公式扩展资料:
期望的性质:
其中,X和Y相互独立。
数学期望是试验中每次可能结果的概率乘以其结果的总和。
计算公式:
1、离内散型:
离散型随机容变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:
2、连续型:
设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值
为随机变量的数学期望,记为E(X)。即
(9)期望值计算公式扩展资料
例题:
在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:
(1)取出的3件产品中一等品件数x的分布列和数学期望;
(2)取出的3件产品中一等品件数多于二等品件数的概率。
解:
x的数学期望E(x)=0*7/24+1*21/40+2*7/40+3*1/120=9/10
离散型随机变量X的取值为,
为X对应取值的概率,可理解为数据
出现的频率
,则:
。
其中E(x)为期望,∑为求和公式。
在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
(10)期望值计算公式扩展资料:
数学期望的来历:
在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。
当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。
因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。
可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。